UNRAVEL: A Robust Modular Velocity Dealiasing Technique for Doppler Radar

Author:

Louf Valentin1,Protat Alain2,Jackson Robert C.3,Collis Scott M.3,Helmus Jonathan4

Affiliation:

1. School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia

2. Research and Development Branch, Bureau of Meteorology, Melbourne, Victoria, Australia

3. Division of Environmental Science, Argonne National Laboratory, Lemont, Illinois

4. Anaconda Inc., Austin, Texas

Abstract

AbstractUnfold Radar Velocity (UNRAVEL) is an open-source modular Doppler velocity dealiasing algorithm for weather radars. UNRAVEL is an algorithm that does not need external reference velocity data, making it easily applicable. The proposed algorithm includes 11 core modules and 2 dealiasing strategies. UNRAVEL is an iterative algorithm. The goal is to build the dealiasing results starting with the strictest possible continuity tests in azimuth and range and, after each step, relaxing the parameters to include more results from a progressively growing number of reference points. UNRAVEL also has modules that perform 3D continuity checks. Thanks to this modular design, the number of dealiasing strategies can be expanded in order to optimize the dealiasing results. While the first driver dealiases Doppler velocity from each tilt independently from one another, the second driver also performs a three-dimensional continuity check of the velocity using successive elevations. The proposed dealiasing algorithm is tested using severe weather data from an S-band Doppler radar that have been aliased to mimic aliased radial velocity patterns that would be observed by a C-band Doppler radar. Artificially aliasing S-band data permits creation of a reference to which the performance of various dealiasing techniques can be compared. Comparisons show that UNRAVEL consistently outperforms other established dealiasing algorithms for the test period selected in this work.

Funder

U.S. Department of Energy

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3