On the Challenges of Tomography Retrievals of a 2D Water Vapor Field Using Ground-Based Microwave Radiometers: An Observation System Simulation Experiment

Author:

Meunier Véronique1,Turner David D.2,Kollias Pavlos1

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

2. National Oceanic and Atmospheric Administration/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

AbstractTwo-dimensional water vapor fields were retrieved by simulated measurements from multiple ground-based microwave radiometers using a tomographic approach. The goal of this paper was to investigate how the various aspects of the instrument setup (number and spacing of elevation angles and of instruments, number of frequencies, etc.) affected the quality of the retrieved field. This was done for two simulated atmospheric water vapor fields: 1) an exaggerated turbulent boundary layer and 2) a simplified water vapor front. An optimal estimation algorithm was used to obtain the tomographic field from the microwave radiometers and to evaluate the fidelity and information content of this retrieved field.While the retrieval of the simplified front was reasonably successful, the retrieval could not reproduce the details of the turbulent boundary layer field even using up to nine instruments and 25 elevation angles. In addition, the vertical profile of the variability of the water vapor field could not be captured. An additional set of tests was performed using simulated data from a Raman lidar. Even with the detailed lidar measurements, the retrieval did not succeed except when the lidar data were used to define the a priori covariance matrix. This suggests that the main limitation to obtaining fine structures in a retrieved field using tomographic retrievals is the definition of the a priori covariance matrix.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3