Application of Artificial Neural Networks on North Atlantic Tropical Cyclogenesis Potential Index in Climate Change

Author:

Yip Zheng Ki1,Yau M. K.1

Affiliation:

1. McGill University, Montreal, Quebec, Canada

Abstract

Abstract A methodology using artificial neural networks is presented to project twenty-first-century changes in North Atlantic tropical cyclone (TC) genesis potential (GP) in a five-model ensemble of global climate models. Two types of neural networks—the self-organizing maps (SOMs) and the forward-feeding back-propagating neural networks (FBNNs)—were employed. This methodology is demonstrated to be a robust alternative to using GCM output directly for tropical cyclone projections, which generally require high-resolution simulations. By attributing the projected changes to the related environmental variables, Emanuel’s revised genesis potential index is used to measure the GP. Changes are identified in the first (P1) and second (P2) half of the twenty-first century. The early and late summer GP decreases in both the P1 and P2 periods over most of the eastern half of the basin and increases off the East Coast of the United States and the north coast of Venezuela during P1. The peak summer GP over the region of frequent TC genesis is projected to decrease more substantially in P1 than in P2. Vertical wind shear (850–200 hPa), temperature (600 hPa), and potential intensity are the most important controls of TC genesis in the North Atlantic basin (NAB) under the changing climate.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3