Adjoint-Derived Impact of Assimilated Observations on Tropical Cyclone Intensity Forecasts of Hurricane Joaquin (2015) and Hurricane Matthew (2016)

Author:

Hoover Brett T.1,Velden Chris S.1

Affiliation:

1. Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Abstract

AbstractThe adjoint-derived observation impact method is used as a diagnostic to derive the impact of assimilated observations on a metric representing the forecast intensity of a tropical cyclone (TC). Storm-centered composites of observation impact and the model background state are computed across 6-hourly analysis/forecast cycles to compute the composite observation impact throughout the life cycle of Hurricane Joaquin (2015) to evaluate the impact of in situ wind and temperature observations in the upper and lower troposphere, as well as the impact of brightness temperature and precipitable water observations, on intensity forecasts with forecast lengths from 12 to 48 h. The compositing across analysis/forecast cycles allows for the exploration of consistent relationships between the synoptic-scale state of the initial conditions and the impact of observations that are interpreted as flow-dependent interactions between model background bias and correction by assimilated observations on the TC intensity forecast. The track of Hurricane Matthew (2016), with an extended period of time near the coasts of Florida, Georgia, and the Carolinas, allows for a comparison of the impact of aircraft reconnaissance observations with the impact of nearby overland rawinsonde observations available within the same radius of the TC.

Funder

Office of Naval Research Global

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mutual Dynamics of Tropical Cyclones;Izvestiya, Atmospheric and Oceanic Physics;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3