Assessment of Censoring Using Coherency-Based Detectors on Dual-Polarized Weather Radar

Author:

Ivić Igor R.1,Keränen Reino2,Zrnić Dušan S.3

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

2. Vaisala Oyj, Helsinki, Finland

3. NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract In Doppler weather radars, signals may exhibit coherency in sample time, whereas noise does not. Additionally, in dual-polarized radars, samples of precipitation echo obtained in the two orthogonally polarized channels are substantially more correlated than samples of noise. Therefore, estimates of auto- and cross correlations can be used individually, collectively, and/or with power measurements to enhance detection of precipitation signals, compared to the approach that uses only power estimates from one channel. A possible advantage of using only estimates of coherency for signal detection is that the detector’s performance is less sensitive to errors in noise power measurements. Hence, censoring is more likely to produce desired false alarm rates even if nonnegligible uncertainties are present in the noise power estimates. In this work these aspects are considered using real data from weather radars. Three novel censoring approaches are evaluated and compared to the censoring approach that uses only estimates of signal and noise powers. The first approach uses only cross-correlation measurements, and the second approach combines these with the lag-1 autocorrelation estimates. The third approach utilizes all estimates as in the previous two approaches in combination with power measurements from the horizontal and the vertical channels. Herein, it is shown that, when more accurate measurements of noise powers are available, the third approach produces the highest detection rates followed by the second and the first approaches. Also, it is corroborated that the first and the second approaches exhibit less sensitivity to inaccurate system noise power measurements than the third one.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference20 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Laws of the Scatter Matrix Elements Probabilities Distribution;Lecture Notes in Mechanical Engineering;2022-10-20

2. Coherent Power Measurements with a Compact Airborne Ka-Band Precipitation Radar;Journal of Atmospheric and Oceanic Technology;2018-01

3. Comparison of Meteorological Radar Signal Detectability with Noncoherent and Spectral-Based Processing;Journal of Atmospheric and Oceanic Technology;2016-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3