Advanced Deep Learning-Based Supervised Classification of Multi-Angle Snowflake Camera Images

Author:

Key C.1,Hicks A.1,Notaroš B. M.1

Affiliation:

1. Department of Electrical and Computer Engineering Colorado State University, Fort Collins, CO, USA

Abstract

AbstractWe present improvements over our previous approach to automatic winter hydrometeor classification by means of convolutional neural networks (CNNs), using more data and improved training techniques to achieve higher accuracy on a more complicated dataset than we had previously demonstrated. As an advancement of our previous proof-of-concept study, this work demonstrates broader usefulness of deep CNNs by using a substantially larger and more diverse dataset, which we make publicly available, from many more snow events. We describe the collection, processing, and sorting of this dataset of over 25,000 high-quality multiple-angle snowflake camera (MASC) image chips split nearly evenly between five geometric classes: aggregate, columnar crystal, planar crystal, graupel, and small particle. Raw images were collected over 32 snowfall events between November 2014 and May 2016 near Greeley, Colorado and were processed with an automated cropping and normalization algorithm to yield 224x224 pixel images containing possible hydrometeors. From the bulk set of over 8,400,000 extracted images, a smaller dataset of 14,793 images was sorted by image quality and recognizability (Q&R) using manual inspection. A presorting network trained on the Q&R dataset was applied to all 8,400,000+ images to automatically collect a subset of 283,351 good snowflake images. Roughly 5,000 representative examples were then collected from this subset manually for each of the five geometric classes. With a higher emphasis on in-class variety than our previous work, the final dataset yields trained networks that better capture the imperfect cases and diverse forms that occur within the broad categories studied to achieve an accuracy of 96.2% on a vastly more challenging dataset.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3