Mitigating VHF Lightning Source Retrieval Errors

Author:

Koshak William J.1,Mach Douglas M.2,Bitzer Phillip M.3

Affiliation:

1. NASA Marshall Space Flight Center, Huntsville, Alabama

2. Universities Space Research Association, Huntsville, Alabama

3. University of Alabama in Huntsville, Huntsville, Alabama

Abstract

AbstractThe problem of inferring the location and time of occurrence of a very high frequency (VHF) lightning source emission from Lightning Mapping Array (LMA) network time-of-arrival (TOA) measurements is closely examined in order to clarify the cause of retrieval errors and to determine how best to mitigate these errors. With regard to this inverse problem, the previous literature lacks a comprehensive discussion of the associated forward problem. Hence, the forward problem is analyzed in this study to better clarify why retrieval errors increase with increasing source horizontal range and/or decreasing source altitude. Further insight is obtained by performing carefully designed Monte Carlo inversion simulations that provide specific retrieval error plots, which in turn lead to clear recommendations for mitigating retrieval errors. Based on all of the numerical results, the following strategies are recommended for mitigating retrieval errors (when possible, and without obstructing the line of sight): expand the horizontal extent of the LMA network, maximize the vertical sensor baseline by using mountainous terrain if available, and improve TOA measurement timing accuracy. Adding sensors to the network is relatively ineffective, unless of course the addition of sensors expands the horizontal extent and/or vertical baseline of the network. It is also shown how the standard retrieval method can be generalized by considering, in addition to the regular (unpolarized) point VHF source, the polarized transient very low frequency/low frequency (VLF/LF) electric point dipole source. Multiple observations (i.e., VHF arrival time and power, and VLF/LF arrival time and electric field amplitude) are simultaneously implemented into the new generalized mathematical framework, and the potential benefits are indicated.

Funder

Marshall Space Flight Center

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3