Optimal Spectral Decomposition (OSD) for Ocean Data Assimilation

Author:

Chu Peter C.1,Tokmakian Robin T.1,Fan Chenwu1,Sun L. Charles2

Affiliation:

1. Naval Ocean Analysis and Prediction Laboratory, Department of Oceanography, Naval Postgraduate School, Monterey, California

2. National Oceanographic Data Center, Silver Spring, Maryland

Abstract

AbstractOptimal spectral decomposition (OSD) is applied to ocean data assimilation with variable (temperature, salinity, or velocity) anomalies (relative to background or modeled values) decomposed into generalized Fourier series, such that any anomaly is represented by a linear combination of products of basis functions and corresponding spectral coefficients. It has three steps: 1) determination of the basis functions, 2) optimal mode truncation, and 3) update of the spectral coefficients from innovation (observational increment). The basis functions, depending only on the topography of the ocean basin, are the eigenvectors of the Laplacian operator with the same lateral boundary conditions as the assimilated variable anomalies. The Vapnik–Chervonkis dimension is used to determine the optimal mode truncation. After that, the model field updates due to innovation through solving a set of a linear algebraic equations of the spectral coefficients. The strength and weakness of the OSD method are demonstrated through a twin experiment using the Parallel Ocean Program (POP) model.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3