A Spherical Temperature Sensor Array Design for Near-Surface Atmospheric Temperature Studies

Author:

Yang Jie1,Liu Qingquan1,Ding Feng1,Ding Renhui2

Affiliation:

1. Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and Technology, and Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing, China

2. Jiangsu Meteorological Observation Center, Nanjing, China

Abstract

AbstractThe observation accuracy of the surface air temperature less than 0.1 K is a requirement, stated by the meteorological and climatological community. However, the accuracy of a temperature sensor inside a shield is affected by a number of factors including solar radiation, wind speed, upwelling longwave radiation, air density, sun elevation angle, sun azimuth angle, underlying surface, precipitation, moisture, structure, and coating of the radiation shield. Due to these factors, the temperature error of the temperature sensor may be much larger than 1 K under adverse conditions. To improve the observation accuracy, this paper proposed a spherical temperature sensor array. A series of analytical calculations based on a computational fluid dynamics (CFD) method is performed to verify the design principle of this sensor array. The calculation results show that the temperature error ratio can be assumed as a constant. To verify the accuracy of this sensor array, simulations and observation experiments are conducted. The simulation results show that the mean difference between the temperature provided by this sensor array and the reference air temperature is 0.072 K. The field experiment results show that a root-mean-square error (RMSE) and a mean absolute error (MAE) between the temperature provided by this sensor array and the reference air temperature are 0.173 and 0.153 K, respectively.

Funder

National Natural Science Foundation of China

University Natural Science Research Foundation of Jiangsu Province

Special Scientific Research Fund of Meteorological Public Welfare Profession of China

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3