A New Objective Typhoon Location Algorithm Considering a Perturbation Factor Based on FY-4A Brightness Temperature Data

Author:

Xie Tao12,Chen Jiajun1,Yan Junjie3

Affiliation:

1. a School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing, China

2. b Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

3. c Beijing Huayun Shinetek Science and Technology Co., Ltd., Beijing, China

Abstract

Abstract In this paper, a new objective typhoon positioning algorithm was proposed. The algorithm uses L1 12-channel far-infrared data of the FY-4A geostationary meteorological satellite for objective positioning, verified against best path data provided by the Tropical Cyclone Data Center of the China Meteorological Administration (CMA). By calculating the tangential and radial perturbation values of infrared brightness temperature images, the perturbation factor can be obtained. By adopting the position of the maximum perturbation factor as the center of a circle and considering a radius of no more than 20 km, the position of the minimum perturbation factor was determined; this value represents the central position of the typhoon. Tropical cyclones in 2019 and 2020 were selected for objective positioning, and the objective positioning results were verified against the corresponding time in the best path dataset. The results included centralized verification results for 29 typhoons and optimal path data in 2019. The maximum average error reached 54.67 km, with an annual average typhoon positioning error of 16.15 km. The centralization verification results for 23 typhoons and optimal path data in 2020 indicated a minimum average error of 12.71 km, a maximum average error of 18.56 km, and an annual average typhoon positioning error of 14.82 km. The positioning results for these two years suggest that the longitude obtained with the perturbation factor positioning method is satisfactory, exhibiting an error of less than 20 km. Significance Statement The purpose of this study is to help researchers make scientific discoveries and help the development of typhoon center location technology in the future. This is important because accurate positioning of typhoon center can provide effective help for typhoon path prediction and typhoon intensity determination.

Funder

Natural Science Foundation of Jiangsu Province

National Key R&D Program of China

National Natural Science Foundation of China Project

Jangsu Provincial Innovation Foundation for Postgraduates

Publisher

American Meteorological Society

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3