Accurate Absolute Measurements of Liquid Water Content (LWC) and Ice Water Content (IWC) of Clouds and Precipitation with Spectrometric Water Raman Lidar

Author:

Reichardt Jens1,Knist Christine1,Kouremeti Natalia2,Kitchin William3,Plakhotnik Taras3

Affiliation:

1. a Richard-Aßmann-Observatorium, Deutscher Wetterdienst, Lindenberg, Germany

2. b Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center, Davos Dorf, Switzerland

3. c School of Mathematics and Physics, University of Queensland, Saint Lucia, Queensland, Australia

Abstract

Abstract A detailed description is given of how the liquid water content (LWC) and the ice water content (IWC) can be determined accurately and absolutely from the measured water Raman spectra of clouds. All instrumental and spectroscopic parameters that affect the accuracy of the water-content measurement are discussed and quantified; specifically, these are the effective absolute differential Raman backscattering cross section of water vapor , and the molecular Raman backscattering efficiencies ηliq and ηice of liquid and frozen microparticles, respectively. The latter two are determined following rigorous theoretical approaches combined with Raman Lidar for Atmospheric Moisture Sensing (RAMSES) measurements. For ηice, this includes a new experimental method that assumes continuity of the number of water molecules across the vertical extent of the melting layer. Examples of water-content measurements are presented, including supercooled liquid-water clouds and melting layers. Error sources are discussed; one effect that stands out is interfering fluorescence by aerosols. Aerosol effects and calibration issues are the main reasons why spectral Raman measurements are required for quantitative measurements of LWC and IWC. The presented study lays the foundation for cloud microphysical investigations and for the evaluation of cloud models or the cloud data products of other instruments. As a first application, IWC retrieval methods are evaluated that are based on either lidar extinction or radar reflectivity measurements. While the lidar-based retrievals show unsatisfactory agreement with the RAMSES IWC measurements, the radar-based IWC retrieval which is used in the Cloudnet project performs reasonably well. On average, retrieved IWC agrees within 20% to 30% (dry bias) with measured IWC.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3