Reducing Wave-Induced Microwave Water-Level Measurement Error with a Least Squares–Designed Digital Filter*

Author:

Boon John D.1

Affiliation:

1. Virginia Institute of Marine Science, Gloucester Point, Virginia

Abstract

Abstract A microwave water-level sensor, the Design Analysis model H-3611i, will soon enter service at tide stations operated by the National Oceanic and Atmospheric Administration’s Center for Operational Oceanographic Products and Services (CO-OPS) as part of the National Water Level Observation Network. CO-OPS tests include a multisensor deployment at the U.S. Army Corps of Engineers Field Research Facility at Duck, North Carolina, to evaluate microwave water-level measurement error over a wide range of Atlantic Ocean sea states. In situ precision and accuracy of processed (6-min average) water level is found to depend on sea state in addition to data processing methods and sensor operating mode. Estimates over selected 6-h measurement periods show that a degree-two polynomial successfully models the increase in sensor standard error with increasing zero-moment (Hm0) wave height but with differences in rate of error increase dependent on the application of a prefilter and choice of sensor operating mode. Prefiltering of 1-Hz “fast mode” sensor output to remove variance at selected wind-wave frequencies can reduce standard error during extreme conditions (Hm0 ≈ 3 m) from approximately ±3 cm without prefiltering to about ±1 cm using a least squares–designed (LSD) digital filter with a 60-s cutoff period. When wave heights are elevated, skewed non-Gaussian distributions develop within the 1-Hz (360 s) sample domain wherein a 3σ outlier elimination process applied without prefiltering can introduce a negative bias of up to 5 cm in individual 6-min water-level averages.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference13 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3