Can DSD Assumptions Explain the Differences in Satellite Estimates of Warm Rain?

Author:

Schulte Richard M.1,Kummerow Christian D.1

Affiliation:

1. a Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Abstract

Abstract Satellite-based oceanic precipitation estimates, particularly those derived from the Global Precipitation Measurement (GPM) satellite and CloudSat, suffer from significant disagreement over regions of the globe where warm rain processes are dominant. GPM estimates of average rain rate tend to be lower than CloudSat estimates, due in part to GPM being less sensitive to shallow and/or light precipitation. Using coincident observations between GPM and CloudSat, we find that the GPM_2BCMB product misses about two-thirds of total accumulated warm rain compared to the CloudSat 2C-RAIN-PROFILE product. This difference becomes much smaller when products are compared at 1000 m above the surface (mitigating surface clutter issues) and when forcing the frequency of rain from CloudSat to match the frequency from GPM (mitigating sensitivity issues). However, even then a gap of about 25% remains. Using an optimal estimation retrieval algorithm on the underlying data, we retrieve a similar result, but find that the remaining difference between the GPM and CloudSat retrieved rain rates can be almost entirely accounted for by inconsistent assumptions about the shape of the drop size distribution (DSD) that are made in the two retrievals. We conclude that DSD assumptions contribute significantly to the relative underestimation of warm rain by GPM compared to CloudSat. Because the choice of DSD model has such a large effect on retrieved rain rates, more work is needed to determine whether the DSD models assumed by either the GPM_2BCMB or 2C-RAIN-PROFILE algorithms are actually appropriate for warm rain.

Funder

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3