Sensitivity of Convective Initiation Prediction to Near-Surface Moisture When Assimilating Radar Refractivity: Impact Tests Using OSSEs

Author:

Gasperoni Nicholas A.1,Xue Ming1,Palmer Robert D.2,Gao Jidong3

Affiliation:

1. Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

2. School of Meteorology, and Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma

3. NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract The Advanced Regional Prediction System (ARPS) three-dimensional variational (3DVAR) system is enhanced to include the analysis of radar-derived refractivity measurements. These refractivity data are most sensitive to atmospheric moisture content and provide high-resolution information on near-surface moisture that is important to convective initiation (CI) and precipitation forecasting. Observing system simulation experiments (OSSEs) are performed using simulated refractivity data. The impacts of refractivity on CI and subsequent forecasts are investigated in the presence of varying observation error, radar location, data coverage, and different uncertainties in the background field. Cycled refractivity assimilation and forecasts are performed and the results compared to the truth. In addition to the perfect model experiments, imperfect model experiments are performed where the forecasts use the Weather Research and Forecasting (WRF) model instead of the ARPS. A simulation for the 19 May 2010 central plain convection case is used for the OSSEs. It involves a large storm system, large convective available potential energy, and little convective inhibition, allowing for CI along a warm front in northern Oklahoma and ahead of a dryline later to the southwest. Emphasis is placed on the quality of moisture analyses and the subsequent forecasts of CI. Results show the ability of refractivity assimilation to correct low-level moisture errors, leading to improved CI forecasts. Equitable threat scores for reflectivity are generally higher when refractivity data are assimilated. Tests show small sensitivity to increased observational error or ground clutter coverage, and greater sensitivity to the limited data coverage of a single radar.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3