Fine Structure, Instabilities, and Turbulence in the Lower Atmosphere: High-Resolution In Situ Slant-Path Measurements with the DataHawk UAV and Comparisons with Numerical Modeling

Author:

Balsley Ben B.1,Lawrence Dale A.2,Fritts David C.3,Wang Ling3,Wan Kam3,Werne Joe4

Affiliation:

1. Cooperative Institute for Research in Environment Sciences, University of Colorado Boulder, Boulder, Colorado

2. Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, Colorado

3. GATS, Inc., Boulder, Colorado

4. NWRA, Boulder, Colorado

Abstract

AbstractA new platform for high-resolution in situ measurements in the lower troposphere is described and its capabilities are demonstrated. The platform is the small GPS-controlled DataHawk unmanned aerial system (UAS), and measurements were performed under stratified atmospheric conditions at Dugway Proving Ground, Utah, on 11 October 2012. The measurements included spiraling vertical profiles of temperature and horizontal wind vectors, from which the potential temperature θ, mechanical energy dissipation rate ε, Brunt–Väsälä frequency N, temperature structure parameter CT2, Thorpe and Ozmidov scales LT and LO, and Richardson number Ri were inferred. Profiles of these quantities from ~50 to 400 m reveal apparent gravity wave modulation at larger scales, persistent sheet-and-layer structures at scales of ~30–100 m, and several layers exhibiting significant correlations of large ε, CT2, LT, and small Ri. Smaller-scale flow features suggest local gravity waves and Kelvin–Helmholtz instabilities exhibiting strong correlations, yielding significant vertical displacements and inducing turbulence and mixing at smaller scales. Comparisons of these results with a direct numerical simulation (DNS) of similar multiscale dynamics indicate close agreement between measured and modeled layer character and evolution, small-scale dynamics, and turbulence intensities. In particular, a detailed examination of the potential biases in inferred quantities and/or misinterpretation of the underlying dynamics as a result of the specific DataHawk sampling trajectory is carried out using virtual sampling paths through the DNS and comparing these with the DataHawk measurements.

Funder

Army Research Office

National Science Foundation

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3