Affiliation:
1. Program for Air, Water and Landscape Sciences, Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Abstract
AbstractDuring the years 2010–13, atmospheric eddy covariance measurement of oxygen was performed at the marine site Östergarnsholm in the Baltic Sea. The fast response optode Microx TX3 was used with two different types of tapered sensors. In spite of the increased lifetime, the optical isolated sensor is limited by the slower response time and is unsuitable for ground-based eddy covariance measurements. The sensor without optical isolation shows a −⅔ slope within the inertial subrange and attains sufficient response time and precision to be used in air–sea applications during continuous periods of 1–4 days. Spectral and cospectral analysis shows oxygen measured with the nonoptical isolated sensor to follow the same shape as for CO2 and water vapor when normalized. The sampling rate of the Microx TX3 is 2 Hz; however, the sensor was found to have a limited response and resolution, yielding a flux loss in the frequency range f > 0.3 Hz. This can be corrected for by applying cospectral similarity simultaneously using measurements of latent heat as the reference signal. On average the magnitude of the cospectral correction added 20% to the uncorrected oxygen flux during neutral atmospheric stratification.
Publisher
American Meteorological Society
Subject
Atmospheric Science,Ocean Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献