Estimating Full Longwave and Shortwave Radiative Transfer with Neural Networks of Varying Complexity

Author:

Lagerquist Ryan12ORCID,Turner David D.2,Ebert-Uphoff Imme13,Stewart Jebb Q.2

Affiliation:

1. a Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

2. b National Oceanic and Atmospheric Administration/Global Systems Laboratory, Boulder, Colorado

3. c Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado

Abstract

Abstract Radiative transfer (RT) is a crucial but computationally expensive process in numerical weather/climate prediction. We develop neural networks (NN) to emulate a common RT parameterization called the Rapid Radiative Transfer Model (RRTM), with the goal of creating a faster parameterization for the Global Forecast System (GFS) v16. In previous work we emulated a highly simplified version of the shortwave RRTM only—excluding many predictor variables, driven by Rapid Refresh forecasts interpolated to a consistent height grid, using only 30 sites in the Northern Hemisphere. In this work we emulate the full shortwave and longwave RRTM—with all predictor variables, driven by GFSv16 forecasts on the native pressure–sigma grid, using data from around the globe. We experiment with NNs of widely varying complexity, including the U-net++ and U-net3+ architectures and deeply supervised training, designed to ensure realistic and accurate structure in gridded predictions. We evaluate the optimal shortwave NN and optimal longwave NN in great detail—as a function of geographic location, cloud regime, and other weather types. Both NNs produce extremely reliable heating rates and fluxes. The shortwave NN has an overall RMSE/MAE/bias of 0.14/0.08/−0.002 K day−1 for heating rate and 6.3/4.3/−0.1 W m−2 for net flux. Analogous numbers for the longwave NN are 0.22/0.12/−0.0006 K day−1 and 1.07/0.76/+0.01 W m−2. Both NNs perform well in nearly all situations, and the shortwave (longwave) NN is 7510 (90) times faster than the RRTM. Both will soon be tested online in the GFSv16. Significance Statement Radiative transfer is an important process for weather and climate. Accurate radiative transfer models exist, such as the RRTM, but these models are computationally slow. We develop neural networks (NNs), a type of machine learning model that is often computationally fast after training, to mimic the RRTM. We wish to accelerate the RRTM by orders of magnitude without sacrificing much accuracy. We drive both the NNs and RRTM with data from the GFSv16, an operational weather model, using locations around the globe during all seasons. We show that the NNs are highly accurate and much faster than the RRTM, which suggests that the NNs could be used to solve radiative transfer inside the GFSv16.

Funder

National Oceanic and Atmospheric Administration

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference55 articles.

1. Anderson, G. P., S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, 1986: AFGL atmospheric constituent profiles (0–120 km). Air Force Geophysics Laboratory Tech. Rep. AFGL-TR-86-0110, 46 pp., https://apps.dtic.mil/sti/citations/ADA175173.

2. A revised radiation package of G-packed McICA and two-stream approximation: Performance evaluation in a global weather forecasting model;Baek, S.,2017

3. Robustness of neural network emulations of radiative transfer parameterizations in a state-of-the-art general circulation model;Belochitski, A.,2021

4. Beucler, T., and Coauthors, 2021: Climate-invariant machine learning. arXiv, 2112.08440v2, https://doi.org/10.48550/arXiv.2112.08440.

5. Leveraging modern artificial intelligence for remote sensing and NWP: Benefits and challenges;Boukabara, S.-A.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3