Rain Attenuation Prediction Model for Lagos at Millimeter Wave Bands

Author:

Yussuff Abayomi Isiaka1,Haji Khamis Nor Hisham2

Affiliation:

1. Lagos State University, Lagos, Nigeria, and Universiti Teknologi Malaysia, Johor Bahru, Malaysia

2. Universiti Teknologi Malaysia, Johor Bahru, Malaysia

Abstract

Abstract Lagos, Nigeria (6.35°N, 3.2°E), is a coastal station in the rain forest area of southwestern Nigeria with an altitude of 38 m. Since most communication now takes place above the X band because of congestion of lower bands, it was necessary to look into ways of maximizing X-band usage. There are inadequate data for use in rain propagation studies at microwave frequencies, and even less so at millimeter wave bands where most of the signal depolarization and fading has been discovered to exist. The proposed model is a modification of the International Telecommunication Union–Radio Communication Sector (ITU-R) model combined with locally obtained regression coefficients for estimating specific attenuation as proposed by G. Olalere Ajayi. The Dissanayake, Allnutt, and Haidara (DAH), Simple Attenuation Model (SAM), and ITU-R attenuation prediction models were investigated along with the proposed model. The ITU-R model was observed to produce the best results at 40 GHz, with percentage error values of 0.61%, 0.55%, and 0.49% at 0.1%, 0.01%, and 0.001% of the time, respectively. In comparison, the proposed prediction model showed good performance at 20-GHz down-link frequency, with percentage error values of 3.6%, 3.3%, and 2.9% at 0.1%, 0.01%, and 0.001% of the time, respectively. The obtained results also showed good agreement with other similar works in the open literature. The results presented in this work are valuable for the design and planning of a satellite link in the tropical regions.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference27 articles.

1. A new rain attenuation conversion technique for tropical regions;Abdulrahman;Prog. Electromagn. Res.,2010

2. Rain drop characteristics during a tropical thunderstorm and monsoon rainfall at Ile-If;Ajayi;Antenna Telecommun.,1984

3. Some aspects of tropical rainfall and their effect on microwave propagation;Ajayi;Int. J. Satell. Commun.,1990

4. Centimeter and millimeter wave attenuation by atmospheric gases rainfall at a tropical station;Ajayi;Int. J. Infrared Millimeter Waves,1984

5. Computation of attenuation, phase rotation, and cross-polarization of radio waves due to rainfall in tropical regions;Ajose;IEEE Trans. Antennas Propag.,1995

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3