Modular, Flexible, Low-Cost Microstructure Measurements: The Epsilometer

Author:

Le Boyer Arnaud1,Alford Matthew H.1,Couto Nicole1,Goldin Michael1,Lastuka Sean1,Goheen Sara1,Nguyen San1,Lucas Andrew J.1,Hennon Tyler D.2

Affiliation:

1. a Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

2. b University of Alaska Fairbanks, Fairbanks, Alaska

Abstract

AbstractThe Epsilometer (“epsi”) is a small (7 cm diameter × 30 cm long), low-power (0.15 W), and extremely modular microstructure package measuring thermal and kinetic energy dissipation rates, χ and ε. Both the shear probes and FP07 temperature sensors are fabricated in house following techniques developed by Michael Gregg at the Applied Physics Laboratory/University of Washington (APL/UW). Sampling eight channels (two shear, two temperature, three-axis accelerometer, and a spare for future sensors) at 24 bit precision and 325 Hz, the system can be deployed in standalone mode (battery power and recording to microSD cards) for deployment on autonomous vehicles, wave powered profilers, or it can be used with dropping body termed the “epsi-fish” for profiling from boats, autonomous surface craft or ships with electric fishing reels or other simple winches. The epsi-fish can also be used in real-time mode with the Scripps “fast CTD” winch for fully streaming, altimeter-equipped, line-powered, rapid-repeating, near-bottom shipboard profiles to 2200 m. Because this winch has a 25 ft (~7.6 m) boom deployable outboard from the ship, contamination by ship wake is reduced one to two orders of magnitude in the upper 10–15 m. The noise floor of ε profiles from the epsi-fish is ~10−10 W kg−1. This paper describes the fabrication, electronics, and characteristics of the system, and documents its performance compared to its predecessor, the APL/UW Modular Microstructure Profiler (MMP).

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3