A Method for Assessing Relative Skill in Retrieving Cloud and Precipitation Properties in Next-Generation Cloud Radar and Radiometer Orbiting Observatories

Author:

Xu Zhuocan1,Mace Gerald G.1,Posselt Derek J.2

Affiliation:

1. University of Utah, Salt Lake City, Utah

2. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Abstract

AbstractA Bayesian Markov chain Monte Carlo (MCMC) algorithm is utilized to compare the skill of an A-Train-like observing system with a cloud, convection, and precipitation (CCP) observing system like that contemplated for the 2020s by the 2017 National Academy of Sciences Decadal Survey. The main objective is to demonstrate a framework for observational trade space studies. This initial work focuses on weakly precipitating warm shallow cumulus constructed from in situ data. Radiative computations are based on Mie theory with spherical assumptions. Simulated measurements in the CCP configuration consist of W- and Ka-band radar reflectivity and path-integrated attenuation, 31 and 94 GHz brightness temperatures (Tb), and visible and near-infrared reflectances. The collection of measurements in the CloudSat configuration is identical, but includes a single 94 GHz radar frequency, and the uncertainty in the 94 GHz microwave brightness temperature is increased to mimic the CloudSat Tb product. The experiments demonstrate that it remains a challenge to diagnose cloud properties in the presence of light rain because of the tendency of microwave remote sensing to respond to the higher moments of the hydrometeor populations. Rain properties are significantly better constrained than cloud properties, even in the optimal CCP configuration. The addition of Ka-band measurements places substantial constraints on the precipitation rain effective radius and rain rates. The Tb offers important information regarding the column-integrated condensate mass, the measurement accuracy of which appears more likely to affect the retrievals of clouds with low liquid water path. The constraints provided by reflectances are largely restricted to regions near the cloud top, particularly in the raining cases.

Funder

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3