Monte Carlo Simulations for Evaluating the Accuracy of Geostationary Lightning Mapper Detection Efficiency and False Alarm Rate Retrievals

Author:

Virts Katrina S.1,Koshak William J.2

Affiliation:

1. a University of Alabama in Huntsville, Huntsville, Alabama

2. b NASA Marshall Space Flight Center, Huntsville, Alabama

Abstract

Abstract Performance assessments of the Geostationary Lightning Mapper (GLM) are conducted via comparisons with independent observations from both satellite-based sensors and ground-based lightning detection (reference) networks. A key limitation of this evaluation is that the performance of the reference networks is both imperfect and imperfectly known, such that the true performance of GLM can only be estimated. Key GLM performance metrics such as detection efficiency (DE) and false alarm rate (FAR) retrieved through comparison with reference networks are affected by those networks’ own DE, FAR, and spatiotemporal accuracy, as well as the flash matching criteria applied in the analysis. This study presents a Monte Carlo simulation–based inversion technique that is used to quantify how accurately the reference networks can assess GLM performance, as well as suggest the optimal matching criteria for estimating GLM performance. This is accomplished by running simulations that clarify the specific effect of reference network quality (i.e., DE, FAR, spatiotemporal accuracy, and the geographical patterns of these attributes) on the retrieved GLM performance metrics. Baseline reference network statistics are derived from the Earth Networks Global Lightning Network (ENGLN) and the Global Lightning Dataset (GLD360). Geographic simulations indicate that the retrieved GLM DE is underestimated, with absolute errors ranging from 11% to 32%, while the retrieved GLM FAR is overestimated, with absolute errors of approximately 16% to 44%. GLM performance is most severely underestimated in the South Pacific. These results help quantify and bound the actual performance of GLM and the attendant uncertainties when comparing GLM to imperfect reference networks.

Funder

DOC/NOAA/NESDIS-GOES-R

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference36 articles.

1. An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth;Abarca, S. F.,2010

2. Preliminary detection efficiency and false alarm rate assessment of the Geostationary Lightning Mapper on the GOES-16 satellite;Bateman, M.,2020

3. Further investigation into detection efficiency and false alarm rate for the Geostationary Lightning Mappers aboard GOES-16 and GOES-17;Bateman, M.,2021

4. Global distribution and properties of continuing current in lightning;Bitzer, P. M.,2017

5. Bayesian techniques to analyze the merge lightning locating system data;Bitzer, P. M.,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3