Impact of Mass–Size Parameterizations of Frozen Hydrometeors on Microphysical Retrievals: Evaluation by Matching Radar to In Situ Observations from GCPEx and OLYMPEx

Author:

Sy Ousmane O.1,Tanelli Simone1,Durden Stephen L.1,Heymsfield Andrew2,Bansemer Aaron2,Kuo Kwo-Sen3,Niamsuwan Noppasin1,Beauchamp Robert M.1,Chandrasekar V.4,Vega Manuel3,Johnson Michael P.1

Affiliation:

1. a Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

2. b National Center for Atmospheric Research, Boulder, Colorado

3. c NASA Goddard Space Flight Center, Greenbelt, Maryland

4. d Colorado State University, Fort Collins, Colorado

Abstract

AbstractThis article illustrates how multifrequency radar observations can refine the mass–size parameterization of frozen hydrometeors in scattering models and improve the correlation between the radar observations and in situ measurements of microphysical properties of ice and snow. The data presented in this article were collected during the GPM Cold Season Precipitation Experiment (GCPEx) (2012) and Olympic Mountain Experiment (OLYMPEx) (2015) field campaigns, where the true mass–size relationship was not measured. Starting from size and shape distributions of ice particles measured in situ, scattering models are used to simulate an ensemble of reflectivity factors for various assumed mass–size parameterizations (MSP) of the power-law type. This ensemble is then collocated to airborne and ground-based radar observations, and the MSPs are refined by retaining only those that reproduce the radar observations to a prescribed level of accuracy. A versatile “retrieval dashboard” is built to jointly analyze the optimal MSPs and associated retrievals. The analysis shows that the optimality of an MSP depends on the physical assumptions made in the scattering simulators. This work confirms also the existence of a relationship between parameters of the optimal MSPs. Through the MSP optimization, the retrievals of ice water contentMand mean diameterDmseem robust to the change in meteorological regime (between GCPEx and OLYMPEx); whereas the retrieval of the diameter spreadSmseems more campaign dependent.

Funder

National Aeronautics and Space Administration

Japan Aerospace Exploration Agency

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3