A Hydrometeor Classification Method for X-Band Polarimetric Radar: Construction and Validation Focusing on Solid Hydrometeors under Moist Environments

Author:

Kouketsu Takeharu1,Uyeda Hiroshi1,Ohigashi Tadayasu1,Oue Mariko1,Takeuchi Hiroto1,Shinoda Taro1,Tsuboki Kazuhisa1,Kubo Mamoru2,Muramoto Ken-ichiro3

Affiliation:

1. Hydrospheric Atmospheric Research Center, Nagoya University, Nagoya, Japan

2. School of Electrical and Computer Engineering, College of Science and Engineering, Kanazawa University, Kanazawa, Japan

3. National Institute of Technology, Ishikawa College, Tsubata, Japan

Abstract

AbstractA fuzzy-logic-based hydrometeor classification (HC) method for X-band polarimetric radar (X-pol), which is suitable for observation of solid hydrometeors under moist environments producing little or no hail, is constructed and validated. This HC method identifies the most likely hydrometeor at each radar sampling volume from eight categories: 1) drizzle, 2) rain, 3) wet snow aggregates, 4) dry snow aggregates, 5) ice crystals, 6) dry graupel, 7) wet graupel, and 8) rain–hail mixture. Membership functions are defined on the basis of previous studies. The HC method uses radar reflectivity Zh, differential reflectivity Zdr, specific differential phase Kdp, and correlation coefficient ρhv as its main inputs, and temperature with some consideration of relative humidity as supplemental information. The method is validated against ground and in situ observations of solid hydrometeors (dry graupel, dry snow aggregates, and ice crystals) under a moist environment. Observational data from a ground-based imaging system are used to validate the HC method for dry graupel and dry snow aggregates. For dry snow aggregates and ice crystals, the HC method is validated using simultaneous observations from a balloonborne instrument [hydrometeor videosonde (HYVIS)] and an X-pol range–height indicator directed toward the HYVIS. The HC method distinguishes effectively between dry graupel, dry snow aggregates, and ice crystals, and is therefore valid for HC under moist environments.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3