Improvements in LICOM2. Part II: Arctic Circulation

Author:

Huang Wen-Yu1,Wang Bin2,Li Li-Juan3,Yu Yong-Qiang3

Affiliation:

1. Ministry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science, Tsinghua University, Beijing, China

2. Ministry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science, Tsinghua University, and State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

3. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Abstract

Abstract A known issue of the National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics Climate Ocean Model, version 2 (LICOM2, the standard version) is the use of an artificial island in the Arctic Ocean. The computational instability in the polar region seriously influences the model performance in terms of the Arctic circulation. The above-mentioned instability was originally attributed to the converging zonal grids in the polar region. However, this study finds that better computational stability could be achieved in an improved version of LICOM2 (i.e., LICOM2_imp) after four improvements on implementations of the vertical mixing, mesoscale eddy parameterization, and bottom drag schemes. LICOM2_imp is then able to reduce the aforesaid artificial island to a point (i.e., the North Pole). Two experiments of 650-yr integration by LICOM2_imp are carried out using different bathymetries: Exp IMPV0 with the artificial island (88°–90°N) and IMPV1 with only the single pole. The focus of this paper is on the Arctic circulation. Exp IMPV1 gives a more reasonable distribution of salinity and temperature in the Arctic Ocean, a more accurate location of the center of the Beaufort Gyre, and a better net volume flux of the transpolar drift. With more realistic bathymetry in the Arctic Ocean, the biases of net volume fluxes across the Fram Strait, Barents Sea Opening, and Barents Sea Exit are reduced from 1.71 to 1.56, from 0.23 to 0.10, and from 0.71 to 0.45 Sv (1 Sv ≡ 106 m3 s−1), respectively, closer to the observations. The large biases of the net volume fluxes at the Fram Strait in both experiments may be attributed to the closed Nares Strait and other straits/channels in the Canadian Arctic Archipelago.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3