The Near-Infrared Airglow Camera on the International Space Station

Author:

Gelinas L. J.1,Hecht J. H.1,Rudy R. J.12

Affiliation:

1. a Space Sciences Applications Laboratory, The Aerospace Corporation, El Segundo, California

2. b Kookoosint Scientific, Camarillo, California

Abstract

Abstract The OH airglow layer is a persistent feature of Earth’s upper mesosphere, centered near 87 km altitude, that can be perturbed by atmospheric gravity waves (AGWs) and instabilities. While ground-based airglow imaging has been used to study these perturbations locally, this technique is limited by tropospheric weather. Space-based remote sensing provides a platform to measure these processes globally. In addition, portions of the OH airglow band span an atmospheric window, allowing airglow illumination of the ground for imaging of nighttime clouds and Earth terrain features. The Near-Infrared Airglow Camera (NIRAC) images the airglow at 1.6 μm and while deployed to the International Space Station (ISS) from May 2019 to November 2021 demonstrated these applications. The camera uses a patented motion-compensation system with a custom rectilinear lens that allows multisecond, nearly smear-free imaging (∼<1.5 pixels) at a ground pixel resolution of ∼83 m. With a ∼170 km × 170 km ground swath, NIRAC acquires overlapping images at a 7–10-s cadence. Parallax considerations enable detection of both AGWs and instabilities in the airglow, and scenes can be analyzed for terrain and cloud height. NIRAC also has a short-exposure daytime mode for cloud and ground imagery. This study describes NIRAC and its operations on the ISS and presents imagery examples of Earth terrain and surface phenomenology (such as fires), cloud imagery at all moon phases day and night, and the nighttime detection of AGWs and instabilities above 80 km altitude. Significance Statement The Near-Infrared Airglow Camera (NIRAC) is the first space-based instrument to exploit the bright 1.6 μm OH Meinel airglow emission band for Earth surface imager at resolution of ∼83 m. During its 2.5-yr deployment on the International Space Station (ISS), NIRAC obtained over a half million images of Earth’s surface and OH airglow layer. NIRAC has been able to capture images of the very small-scale (<30 km) AGWs and instabilities under a wide range of viewing conditions, including (i) in the vicinity of city lights, (ii) over complex cloud scenes, and (iii) under both moondown and moonup illumination. NIRAC also acquired daytime and nighttime images of clouds, hurricanes and typhoons, human lighting, and forest fires in the 1.6 μm band.

Funder

The Aerospace Corporation

Publisher

American Meteorological Society

Reference46 articles.

1. Compound extremes drive the western Oregon wildfires of September 2020;Abatzoglou, J. T.,2021

2. Statistical characteristics of high-frequency gravity waves observed by an airglow imager at Andes Lidar Observatory;Cao, B.,2022

3. Chen, Y., S. Sun-Mack, R. Arduini, and P. Minnis, 2006: Clear-sky and surface narrowband albedo variations derived from VIRS and MODIS data. 12th Conf. on Atmospheric Radiation, Madison, WI, Amer. Meteor. Soc., 5.6, https://ams.confex.com/ams/Madison2006/techprogram/paper_113228.htm.

4. Characterizing a new surface-based shortwave cloud retrieval technique, based on transmitted radiance for soil and vegetated surface types;Coddington, O.,2013

5. Interpretation of snow properties from imaging spectrometry;Dozier, J.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3