Influence of Pycnocline Smoothing and Subgrid-Scale Variability of Density Profiles on the Determination of Mixed Layer Depth

Author:

Ok Hyejin1,Noh Yign1,Choi Yeonju1

Affiliation:

1. Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea

Abstract

AbstractThis study investigates how pycnocline smoothing and subgrid-scale variability of density profiles influence the determination of the mixed layer depth (MLD) in the global ocean, and applies the results of analysis to assess the ability of ocean general circulation models (OGCM) to simulate the MLD. For this purpose, individual, monthly mean, and climatological profiles are analyzed over a horizontal resolution of 1° × 1° for both observation data (Argo) and eddy-resolving OGCM (OFES) results. It is found that the MLDs from averaged profiles are generally smaller than those from individual profiles because of pycnocline smoothing induced by the averaging process. A correlation is found between the decrease in MLD Δh and the increase in pycnocline thickness Δδ of averaged profiles, except during winter in the high-latitude ocean. The relation is estimated as Δh = −αΔδβ, where α ≃ 0.7 in all cases, but β increases with the subgrid-scale variability of density profiles. A correlation is also found between Δh and the standard deviation of the MLD within a grid. The results are applied to estimate how much of the MLD bias of OFES is due to prediction error and how much is due to profile error, induced by different pycnocline smoothing and the subgrid-scale variability of density profiles. The study also shows how profile error varies with the threshold density difference criterion.

Funder

MEST, S. Korea

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3