A High-Volume Cryosampler and Sample Purification System for Bromine Isotope Studies of Methyl Bromide*

Author:

Thornton Brett F.1,Horst Axel2,Carrizo Daniel2,Holmstrand Henry2,Andersson Per3,Crill Patrick M.4,Gustafsson Örjan2

Affiliation:

1. Department of Applied Environmental Science, Department of Geological Sciences, and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

2. Department of Applied Environmental Science, and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

3. Laboratory for Isotope Geology, Swedish Museum of Natural History, Stockholm, Sweden

4. Department of Geological Sciences, and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

Abstract

Abstract A system was developed for collecting from the ambient atmosphere the methyl halides CH3Cl and CH3Br in quantities sufficient for chlorine and bromine isotope analysis. The construction and operation of the novel cryogenic collection system (cryosampler) and sample purification system developed for this task are described. This study demonstrates the capability of the cryosampler by quantifying the CH3Cl and CH3Br collected from atmospheric samples and the nonfractionating bromine isotope fingerprint of CH3Br from synthetic air samples of controlled composition. An optimized cryosampler operation time of 4 h at a flow rate of 15 L min−1 is applied to yield the nearly 40 ng required for subsequent δ81Br-CH3Br analyses. The sample purification system is designed around a packed column gas chromatography–quadropole–mass spectrometry (GCqMS) system with three additional cryotraps and backflushing capacity. The system's suitability was tested by observing both the mass recovery and the lack of Δ81Br isotope fractionation induced during sample purification under varying flow rates and loading scenarios. To demonstrate that the entire system samples and dependably delivers CH3Br to the isotope analysis system without inducing isotope fractionation, diluted synthetic air mixtures prepared from standard gases were processed through the entire system, yielding a Δ81Br-CH3Br of +0.03‰ ± 0.10‰ relative to their starting composition. Finally, the combined cryosampler–purification and analysis system was applied to demonstrate the first-ever δ81Br-CH3Br in the ambient atmosphere with two samples collected in the autumn of 2011, yielding −0.08‰ ± 0.43‰ and +1.75‰ ± 0.13‰ versus standard mean ocean bromide for samples collected at a suburban Stockholm, Sweden, site.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3