Affiliation:
1. College of Oceanography, and Key Laboratory of Coastal Disaster and Protection, Ministry of Education, Hohai University, Nanjing, Jiangsu, China
Abstract
AbstractSea surface currents are commonly neglected when estimating the air–sea turbulent heat fluxes in bulk formulas. Using buoy observations in the Bohai Sea, this paper investigated the effects of near-coast multiscale currents on the quantification of turbulent heat fluxes, namely, latent heat flux (LH) and sensible heat flux (SH). The maximum current reached 1 m s−1 in magnitude, and a steady northeastward current of 0.16 m s−1 appeared in the southern Bohai Strait. The predominant tidal signal was the semidiurnal current, followed by diurnal components. The mean absolute surface wind was from the northeast with a speed of approximately 3 m s−1. The surface winds at a height of 11 m were dominated by the East Asian monsoon. As a result of upwind flow, the monthly mean differences in LH and SH between the estimates with and without surface currents ranged from 1 to 2 W m−2 in July (stable boundary layer) and November (unstable boundary layer). The hourly differences were on average 10 W m−2 and ranged from 0 to 24 W m−2 due to changes in the relative wind speed by high-frequency rotating surface tidal currents. The diurnal variability in LH/SH was demonstrated under stable and unstable boundary conditions. Observations provided an accurate benchmark for flux comparisons. The newly updated atmospheric reanalysis products MERRA-2 and ERA5 were superior to the 1° OAFlux data at this buoy location. However, future efforts in heat flux computation are still needed to, for example, consider surface currents and resolve diurnal variations.
Publisher
American Meteorological Society
Subject
Atmospheric Science,Ocean Engineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献