Analytical and Residual Bootstrap Methods for Parameter Uncertainty Assessment in Tidal Analysis with Temporally Correlated Noise

Author:

Innocenti Silvia1ORCID,Matte Pascal1,Fortin Vincent1,Bernier Natacha1

Affiliation:

1. a Meteorological Research Division, Environment and Climate Change Canada, Montreal, Quebec, Canada

Abstract

Abstract Reconstructing tidal signals is indispensable for verifying altimetry products, forecasting water levels, and evaluating long-term trends. Uncertainties in the estimated tidal parameters must be carefully assessed to adequately select the relevant tidal constituents and evaluate the accuracy of the reconstructed water levels. Customary harmonic analysis uses ordinary least squares (OLS) regressions for their simplicity. However, the OLS may lead to incorrect estimations of the regression coefficient uncertainty due to the neglect of the residual autocorrelation. This study introduces two residual resamplings (moving-block and semiparametric bootstraps) for estimating the variability of tidal regression parameters and shows that they are powerful methods to assess the effects of regression errors with nontrivial autocorrelation structures. A Monte Carlo experiment compares their performance to four analytical procedures selected from those provided by the RT_Tide, UTide, and NS_Tide packages and the robustfit.m MATLAB function. In the Monte Carlo experiment, an iteratively reweighted least squares (IRLS) regression is used to estimate the tidal parameters for hourly simulations of one-dimensional water levels. Generally, robustfit.m and the considered RT_Tide method overestimate the tidal amplitude variability, while the selected UTide and NS_Tide approaches underestimate it. After some substantial methodological corrections the selected NS_Tide method shows adequate performance. As a result, estimating the regression variance–covariance with the considered RT_Tide, UTide, and NS_Tide methods may lead to the erroneous selection of constituents and underestimation of water level uncertainty, compromising the validity of their results in some applications. Significance Statement At many locations, the production of reliable water level predictions for marine navigation, emergency response, and adaptation to extreme weather relies on the precise modeling of tides. However, the complicated interaction between tides, weather, and other climatological processes may generate large uncertainties in tidal predictions. In this study, we investigate how different statistical methods may lead to different quantification of tidal model uncertainty when using data with completely known properties (e.g., knowing the tidal signal, as well as the amount and structure of noise). The main finding is that most commonly used statistical methods may estimate incorrectly the uncertainty in tidal parameters and predictions. This inconsistency is due to some specific simplifying assumptions underlying the analysis and may be reduced using statistical techniques based on data resampling.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference82 articles.

1. Non-linear interaction modulates global extreme sea levels, coastal flood exposure, and impacts;Arns, A.,2020

2. Predicting extreme surges from sparse data using a copula-based hierarchical Bayesian spatial model;Beck, N.,2020

3. CircStat: A MATLAB toolbox for circular statistics;Berens, P.,2009

4. Deterministic and ensemble storm surge prediction for Atlantic Canada with lead times of hours to ten days;Bernier, N. B.,2015

5. Beyaztas, B., and E. Firuzan, 2016: An empirical comparison of block bootstrap methods: Traditional and newer ones. J. Data Sci., 14, 641–656, https://doi.org/10.6339/JDS.201610_14(4).0004.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3