Derivation of New Daily Rainfall Values from TAO 1-Min Rain Gauge Data

Author:

Cook Werner E.1,Greene J. Scott1

Affiliation:

1. a Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract Daily rainfall accumulation estimates have been derived from 1-min volume data collected via self-syphon rain gauges deployed in the Tropical Atmosphere–Ocean (TAO) array of oceanographic buoys. The underlying high-resolution volume data were obtained directly from the Global Tropical Moored Buoy Array (GTMBA) Project Office of NOAA/Pacific Marine Environmental Laboratory. The derived accumulations have been incorporated into the Pacific Rainfall (PACRAIN) database as estimated daily values to augment existing sea level oceanic rainfall records gathered using traditional rain gauges. They have also been included in the PACRAIN historical, monthly gridded rainfall product. The methodology presented, which employs differencing of least squares–regressed sensor levels about 0000 UTC and rain gauge syphon events, is shown to offer improved error characteristics over the methodology used to compute previously published GTMBA rain rates. In particular, the PACRAIN method yields larger coefficients of determination and smaller standard errors than the duplicated GTMBA method when applied to synthetic rainfall data with noise magnitude and decorrelation times encompassing those observed in the real 1-min data. These results are shown to be consistent with mathematical expectations. Sources of instrument and catchment errors, as well as evaporation, are discussed in the context of their potential effects on accumulation estimates for periods of a day or longer. Significance Statement In this paper, we describe the derivation of daily rainfall amounts from raw rain gauge data obtained from buoy-mounted rain gauges. These new accumulation estimates expand the store of rainfall estimates from locations approximating the open-ocean conditions of the tropical Pacific Ocean. The derivation technique we describe exhibits better performance than the method used to generate previously published estimates using the same dataset.

Funder

Climate Program Office

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference28 articles.

1. Gridded monthly rainfall estimates derived from historical atoll observations;Cook, W. E.,2019

2. A generalized point process model for rainfall;Cowpertwait, P. S. P.,1994

3. A spatial-temporal point process model with a continuous distribution of storm types;Cowpertwait, P. S. P.,2010

4. The Markov modulated Poisson process (MMPP) cookbook;Fischer, W.,1993

5. The comprehensive Pacific Rainfall Database;Greene, J. S.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3