Salinity Profile Estimation in the Pacific Ocean from Satellite Surface Salinity Observations

Author:

Bao Senliang1,Zhang Ren2,Wang Huizan1,Yan Hengqian2,Yu Yang2,Chen Jian3

Affiliation:

1. Institute of Meteorology and Oceanography, National University of Defense Technology, Nanjing, and State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China

2. Institute of Meteorology and Oceanography, National University of Defense Technology, Nanjing, China

3. Beijing Institute of Applied Meteorology, Beijing, China

Abstract

AbstractA nonlinear empirical method, called the generalized regression neural network with the fruit fly optimization algorithm (FOAGRNN), is proposed to estimate subsurface salinity profiles from sea surface parameters in the Pacific Ocean. The purpose is to evaluate the ability of the FOAGRNN methodology and satellite salinity data to reconstruct salinity profiles. Compared with linear methodology, the estimated salinity profiles from the FOAGRNN method are in better agreement with the measured profiles at the halocline. Sensitivity studies of the FOAGRNN estimation model shows that, when applied to various types of sea surface parameters, latitude is the most significant variable in estimating salinity profiles in the tropical Pacific Ocean (correlation coefficient R greater than 0.9). In comparison, sea surface temperature (SST) and height (SSH) have minimal effects on the model. Based on FOAGRNN modeling, Pacific Ocean three-dimensional salinity fields are estimated for the year 2014 from remote sensing sea surface salinity (SSS) data. The performance of the satellite-based salinity field results and possible sources of error associated with the estimation methodology are briefly discussed. These results suggest a potential new approach for salinity profile estimation derived from sea surface data. In addition, the potential utilization of satellite SSS data is discussed.

Funder

National Key R&D Program of China

National Natural Science Foundation of China Youth Science Fund Project

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3