A Comparison of Scan Speedup Strategies and Their Effect on Rapid-Scan Weather Radar Data Quality

Author:

Mahre Andrew12,Yu Tian-You321,Bodine David J.21

Affiliation:

1. a School of Meteorology, University of Oklahoma, Norman, Oklahoma

2. b Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma

3. c School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma

Abstract

AbstractAs the existing NEXRAD network nears the end of its life cycle, intense study and planning are underway to design a viable replacement system. Ideally, such a system would offer improved temporal resolution compared to NEXRAD, without a loss in data quality. In this study, scan speedup techniques—such as beam multiplexing (BMX) and radar imaging—are tested to assess their viability in obtaining high-quality rapid updates for a simulated long-range weather radar. The results of this study—which uses a Weather Research and Forecasting (WRF) Model–simulated supercell case—show that BMX generally improves data quality for a given scan time or can provide a speedup factor of 1.69–2.85 compared to NEXRAD while maintaining the same level of data quality. Additionally, radar imaging is shown to improve data quality and/or decrease scan time when selectively used; however, deleterious effects are observed when imaging is used in regions with sharp reflectivity gradients parallel to the beam spoiling direction. Consideration must be given to the subsequent loss of sensitivity and beam broadening. Finally, imaging is shown to have an effect on the radar-derived mesocyclone strength (ΔV) of a simulated supercell. Because BMX and radar imaging are most easily achieved with an all-digital phased array radar (PAR), these results make a strong argument for the use of all-digital PAR for high-resolution weather observations. It is believed that the results from this study can inform decisions about possible scanning strategies and design of a NEXRAD replacement system for high-resolution weather radar data.

Funder

National Oceanic and Atmospheric Administration

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3