A Dual-Attention Mechanism Deep Learning Network for Mesoscale Eddy Detection by Mining Spatiotemporal Characteristics

Author:

Li Baixin1,Tang Huan1,Ma Dongfang12,Lin Jianmin3

Affiliation:

1. a Institute of Marine Sensing and Networking, Zhejiang University, Zhoushan, China

2. b Hainan Institute, Zhejiang University, Sanya, China

3. c Key Laboratory of Ocean Observation-Imaging Testbed of Zhejiang Province, Zhejiang University, Zhoushan, China

Abstract

Abstract Mesoscale eddies are a mechanism for ocean energy transfer, and identifying them on a global scale provides a means of exploring ocean mass and energy exchange between ocean basins. There are many widely used model-driven methods for detecting mesoscale eddies; however, these methods are not fully robust or generalizable. This study applies a data-driven method and proposes a mesoscale detection network based on the extraction of eddy-related spatiotemporal information from multisource remote sensing data. Focusing on the northwest Pacific, the study first analyzes mesoscale eddy characteristics using a combination of gridded data for the absolute dynamic topography (ADT), sea surface temperature (SST), and absolute geostrophic velocity (UVG). Then, a deep learning network with a dual-attention mechanism and a convolutional long short-term memory module is proposed, which can deeply exploit spatiotemporal feature relevance while encoding and decoding information in the gridded data. Based on the analysis of mesoscale eddy characteristics, ADT and UVG gridded data are selected to be the inputs for the detection network. The experiments show that the accuracy of the proposed network reaches 93.38%, and the weighted mean dice coefficient reaches 0.8918, which is a better score than those achieved by some of the detection networks proposed in previous studies, including U-Net, SymmetricNet, and ResU-Net. Moreover, compared with the model-driven approach used to generate the ground-truth dataset, the network method proposed here demonstrates better performance in detecting mesoscale eddies at smaller scales, partially addressing the problem of ghost eddies.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3