Time Constant Estimates for Radiosonde Temperature Sensors

Author:

Tschudin Marcel E.1,Schroeder Steven R.2

Affiliation:

1. 2. Cad. No. 20 - Flora Sit. A1/1, Zekeriyaköy, TR-34450 Sariyer-Istanbul, Turkey

2. Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Abstract

Abstract To correct time lag errors in radiosonde temperatures the sensor time constant has to be known. Time constants are not published for some widely used sensors and, in some cases, available time constants disagree. This study focuses on ML-405, ML-419, VIZ/Sippican Mark II Microsonde and B2, Russian MMT-1, and Chinese GZZ-7 rod thermistors. It measures still air time constants and heat capacities and derives theoretical still air and aerated time constants based on heat transfer involving nonuniform cylinders. With low aeration, such as in the stratosphere, heat conduction by lead wires from the thermistor noticeably shortens the time constant. Some discrepancies in published time constants are explained by researchers not considering the temperature dependence of all relevant variables. Empirical formulas are derived to estimate the aerated time constant of cylindrical temperature sensors based on dimensions. The aerated time constant in soundings is found to be about 6 times as long at 10 hPa as near sea level.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Relations among atmospheric structure, refraction, and extinction;Comptes Rendus. Physique;2023-10-27

2. A novel design of fast response Mn–Ni–Cu–Fe–O microbead thermistors for radiosonde;Journal of Materials Science: Materials in Electronics;2023-08

3. Aerological Measurements;Springer Handbook of Atmospheric Measurements;2021

4. An E-type Temperature Sensor for Upper Air Meteorology;NANOTECH PRECIS ENG;2018

5. Early and Recent Observational Techniques for Fog;Springer Atmospheric Sciences;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3