Removing Interfering Signals in Spaceborne Radar Data for Precipitation Detection at Very High Altitudes

Author:

Hirose Masafumi1,Okada Keita1,Kawaguchi Kohei1,Takahashi Nobuhiro2

Affiliation:

1. a Faculty of Science and Technology, Meijo University, Nagoya, Japan

2. b Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan

Abstract

Abstract This study investigated the effects of interfering signals on high-altitude precipitation extraction from spaceborne precipitation radar data. Data analyses were performed on the products of the Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR) and the Global Precipitation Measurement Core Observatory Dual-Frequency Precipitation Radar (GPM DPR) to clarify the effects of removing radio interferences and mirror images, particularly focusing on deep precipitation detection. The TRMM PR acquired precipitation data up to an altitude of approximately 20 km and occasionally captured interferences from artificial radio transmissions in specific areas. Artifacts could be distinguished as isolated profiles exhibiting almost constant radar reflectivity. The number of interferences affecting the TRMM PR gradually increased during the operation period of 1998–2013. A filter was introduced to separate the observed profiles into deep storms that reach the upper observation altitude and contamination caused by radio interference. The former frequently appeared over the Sahel area, where the observation upper limits are lowest. The removal of the latter, radio interference, improved the detection accuracy of the mean precipitation at high altitudes and considerably influenced specific low-precipitation areas such as the Middle East. This spatial feature–based filter allowed us to evaluate the results of screening based on noise limits that are implemented in standard algorithms. The GPM DPR Ku-band radar product contained other unwanted echoes due to the mirror images appearing as second-trip echoes contaminating the high-altitude statistics. Such second-trip echoes constitute a major portion of the echoes observed near the highest altitudes of deep storms. Significance Statement Understanding the current state of separation of naturally occurring precipitation signals from artificial interference signals in spaceborne radar data at altitudes of approximately 20 km is critical for gaining a comprehensive picture of the intensity and structure of precipitation systems. In the case of the TRMM PR data, artifacts could be distinguished as isolated profiles with an almost constant radar reflectivity, and interferences gradually increased during the operation period. The removal of radio interference considerably affects the statistics of extremely deep storms. Improved algorithms and observation techniques have expanded the observation coverage associated with the GPM DPR KuPR data, but there are interferences (mirror images) that should be removed for a thorough discussion of very high-altitude precipitation.

Funder

JAXA

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference47 articles.

1. Interference and compatibility analysis of ARABSAT vis-à-vis Eutelsat systems and networks;Alandjani, G.,2012

2. Impact of second trip echoes for space-borne high pulse-repetition-frequency nadir-looking W-band cloud radars;Battaglia, A.,2021

3. GPM-derived climatology of attenuation due to clouds and precipitation at Ka-band;Battaglia, A.,2020

4. Deep-convective influence on the upper troposphere-lower stratosphere composition in the Asian monsoon anticyclone region: 2017 StratoClim campaign results;Bucci, S.,2020

5. Frequency of tropical precipitating clouds as observed by the Tropical Rainfall Measuring Mission Precipitation Radar and ICESat/Geoscience Laser Altimeter System;Casey, S. P. F.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3