Mixing State of Submicrometer Sea Spray Particles Enriched by Insoluble Species in Bubble-Bursting Experiments

Author:

Park Ji Yeon1,Lim Sungil1,Park Kihong1

Affiliation:

1. School of Environmental Science and Engineering, GIST, Gwangju, South Korea

Abstract

Abstract Measurements of size distribution, hygroscopicity, and volatility of submicrometer sea spray particles produced by the bubble busting of artificial and natural seawater were conducted to determine their mixing state and volume fractions of hygroscopic and nonhygroscopic species or volatile and nonvolatile species. The particles sprayed from artificial seawater having insoluble silica particles were found to be an external mixture of two groups of particles having hygroscopic growth factors (HGFs) of 1.33 (an internal mixture of nonhygroscopic silica particles and hygroscopic salt species) and 1.68 (a similar mixture having more salt species) when the mass ratio of insoluble particles to dissolved salts was higher than 2. For sea spray particles from natural seawater, the external mixing was not significantly observed because of a high concentration of dissolved salts. The HGFs of sea spray particles (80–140 nm) from natural seawater were in the range of 1.70–1.76, which were lower than from pure artificial seawater (1.87), and the HGFs had no change before and after membrane filtration of seawater, suggesting that the sea spray particles from natural seawater contained a significant amount of nonhygroscopic dissolved organic matter in addition to hygroscopic salt species. The volume fraction of the nonhygroscopic species ranged from 20% to 29%, and the highest value was observed for seawater samples from the site where strong biological activity occurred, suggesting that biological materials played an important role in the formation of nonhygroscopic organic matter. Volatility measurements also identified the existence of volatile organic species in single particles from natural seawater, with the volume fraction of volatile species evaporated at 100°C being 4%–5%.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3