Monte Carlo–Based Quantification of Uncertainties in Determining Ocean Remote Sensing Reflectance from Underwater Fixed-Depth Radiometry Measurements

Author:

Białek Agnieszka1,Vellucci Vincenzo2,Gentil Bernard3,Antoine David34,Gorroño Javier1,Fox Nigel1,Underwood Craig5

Affiliation:

1. a National Physical Laboratory, Teddington, United Kingdom

2. b Sorbonne Université, CNRS, Institut de la Mer Villefranche, IMEV, Villefranche-sur-Mer, France

3. c Sorbonne Université, UPMC Université de Paris 06, INSU-CNRS, Laboratoire d’Océanographie de Villefranche, Villefranche-sur-Mer, France

4. d Remote Sensing and Satellite Research Group, School of Earth and Planetary Sciences, Curtin University, Perth, Western Australia, Australia

5. e Surrey Space Center, University of Surrey, Guilford, United Kingdom

Abstract

AbstractA new framework that enables evaluation of the in situ ocean color radiometry measurement uncertainty is presented. The study was conducted on the multispectral data from a permanent mooring deployed in clear open ocean water. The uncertainty is evaluated for each component of the measurement equation and data processing step that leads to deriving the remote sensing reflectance. The Monte Carlo method was selected to handle the data complexity such as correlation and nonlinearity in an efficient manner. The results are presented for a prescreened dataset that is suitable for system vicarious calibration applications. The framework provides uncertainty value per measurement taking into consideration environmental conditions present during acquisition. A summary value is calculated from the statistics of the individual uncertainties per each spectral channel. This summary value is below 4% (k = 1) for the blue and green spectral range. For the red spectral channels, the summary uncertainty value increases to approximately 5%. The presented method helps to understand the significance of various uncertainty components and to provide a way of identifying major contributors. This can be used for efficient system performance improvement in the future.

Funder

European Space Agency

Centre National d’Etudes Spatiales

EURAMET EMRP

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3