Data Validation and Mesoscale Assimilation of Himawari-8 Optimal Cloud Analysis Products

Author:

Otsuka Michiko1,Seko Hiromu2,Hayashi Masahiro2,Koizumi Ko3

Affiliation:

1. a Meteorological College, Kashiwa, Chiba, Japan

2. b Meteorological Research Institute, Tsukuba, Ibaraki, Japan

3. c Japan Meteorological Agency, Chiyoda-ku, Tokyo, Japan

Abstract

AbstractHimawari-8 optimal cloud analysis (OCA), which employs all 16 channels of the Advanced Himawari Imager, provides cloud properties such as cloud phase, top pressure, optical thickness, effective radius, and water path. By using OCA, the water vapor distribution can be inferred with high spatiotemporal resolution and with a wide coverage, including over the ocean, which can be useful for improving initial states for prediction of the torrential rainfalls that occur frequently in Japan. OCA products were first evaluated by comparing them with different kinds of datasets (surface, sonde, and ceilometer observations) and with model outputs, to determine their data characteristics. Overall, OCA data were consistent with observations of water clouds with moderate optical thicknesses at low to midlevels. Next, pseudorelative humidity data were derived from the OCA products, and utilized in assimilation experiments of a few heavy rainfall cases, conducted with the Japan Meteorological Agency’s nonhydrostatic model–based Variational Data Assimilation System. Assimilation of OCA pseudorelative humidities caused there to be significant differences in the initial conditions of water vapor fields compared to the control, especially where OCA clouds were detected, and their influence lasted relatively long in terms of forecast hours. Impacts of assimilation on other variables, such as wind speed, were also seen. When the OCA data successfully represented low-level inflows from over the ocean, they positively impacted precipitation forecasts at extended forecast times.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3