Simulating Radiative Fluxes through Southeastern Pacific Stratocumulus Clouds during VOCALS-REx

Author:

Verlinden Kathryn L.1,de Szoeke Simon P.1

Affiliation:

1. College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Abstract

ABSTRACTTime series of solar and thermal infrared radiative flux profiles are simulated with the Rapid Radiative Transfer Model (RRTM) using a hierarchy of constraints from radar reflectivity and passive microwave cloud remote sensing measurements collected over a ship in the southeastern tropical Pacific Ocean (20°S) during the second leg of the Variability of American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx). Incorporating additional constraints results in simulations of physically consistent radiative profiles throughout the atmosphere, especially within the cloud, where they are difficult to observe precisely. Simulated surface radiative fluxes are compared with those observed on the ship and by aircraft.Due to the strong Rayleigh scattering of drizzle drops compared to cloud droplets that absorb, emit, and scatter natural radiation, cloud radar reflectivity overestimates cloud liquid water content (LWC). As a result, clouds are optically too thick and transmission ratios are too low in simulations using radar LWC. Imposing a triangular (increasing linearly with height from zero at cloud base) LWC profile in agreement with microwave liquid water path (LWP) improves the simulation of the transmission ratio. Constraining the corresponding microphysical cloud effective radius to that retrieved from optical depth, LWP, and cloud thickness results in additional improvements to the simulations. Time series, averages, and composite diurnal cycles of radiative fluxes, heating rates, and cloud radiative forcing are presented.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3