The Influence of Frequency Shifts in Microwave Sounder Channels on NWP Analyses and Forecasts

Author:

Peubey Carole1,Bell William1

Affiliation:

1. European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Abstract

Abstract The sensitivity of numerical weather prediction (NWP) analysis and forecast accuracies with respect to frequency shifts in microwave passbands is quantified through a series of observing system experiments using the ECMWF Integrated Forecast System. First, a parameterization is developed to describe the form and magnitude of the brightness temperature errors arising from frequency shifts in Advanced Microwave Sounding Unit-A (AMSU-A) channels 4–10 and Microwave Humidity Sounder (MHS) channels 3–5. Observing system experiments are then run in which realistic synthetic brightness temperature errors are added to AMSU-A observations for various assumptions about the magnitude of a frequency shift, using the parameterization derived previously. A large negative impact on forecast quality is found when a 20-MHz frequency shift is introduced in experiments using a static bias-correction scheme. Although the degradation in forecast scores is reduced by using a variational bias-correction scheme, it remains around 7%–14% (relative) in RMS 6-h forecast errors for temperature and geopotential. Frequency shifts of 5 MHz or greater give rise to a measurable degradation of the forecast even when the variational correction scheme is used. Only low-frequency shifts (of ~1.5 MHz) are found to have a neutral impact on forecasts. Hence, the value of 1.5 MHz can be regarded as an upper limit below which frequency shifts do not degrade forecasts for the key tropospheric and lower-stratospheric temperature sounding channels in a microwave sounding mission. Calculations show that frequency shift is less problematic for 183-GHz humidity sounding channels due to the symmetric positioning of passbands relative to the 183-GHz absorption line. For these channels a passband center frequency stability of 10 MHz is adequate.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference20 articles.

1. Analysis and forecast impact of the main humidity observing systems;Andersson;Quart. J. Roy. Meteor. Soc.,2007

2. Adaptive bias correction for satellite data in a numerical weather prediction system;Auligné;Quart. J. Roy. Meteor. Soc.,2007

3. Direct 4D-Var assimilation of all-sky radiances. Part I: Implementation;Bauer;Quart. J. Roy. Meteor. Soc.,2010

4. The radiometric sensitivity requirements for satellite microwave temperature sounding instruments for numerical weather prediction;Bell;J. Atmos. Oceanic Technol.,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reference Upper-Air Observations for Climate: From Concept to Reality;Bulletin of the American Meteorological Society;2016-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3