Optimization of the Cross-Correlation Algorithm for Two-Component Wind Field Estimation from Single Aerosol Lidar Data and Comparison with Doppler Lidar

Author:

Hamada Masaki1,Dérian Pierre1,Mauzey Christopher F.1,Mayor Shane D.1

Affiliation:

1. California State University, Chico, Chico, California

Abstract

AbstractNumerical and field experiments were conducted to test an optimized cross-correlation algorithm (CCA) for the remote sensing of two-component wind vectors from horizontally scanning elastic backscatter lidar data. Each vector is the result of applying the algorithm to a square and contiguous subset of pixels (an interrogation window) in the lidar scan area. Synthetic aerosol distributions and flow fields were used to investigate the accuracy and precision of the technique. Results indicate that in neutral static stability, when the mean flow direction over the interrogation window is relatively uniform, the random error of the estimates increases as the mean wind speed and turbulence intensity increases. In convective conditions, larger errors may occur as a result of the cellular nature of convection and the dramatic changes in wind direction that may span the interrogation window. Synthetic fields were also used to determine the significance of various image processing and numerical steps used in the CCA. Results show that an iterative approach that dynamically reduces the block size provides the largest performance gains. Finally, data from a field experiment conducted in 2013 in Chico, California, are presented. Comparisons with Doppler lidar data indicate excellent agreement for the 10-min mean wind velocity computed over a set of 150 h: the root-mean-square deviations (and slopes) for the u and υ components are 0.36 m s−1 (0.974) and 0.37 m s−1 (0.991), respectively, with correlation coefficients > 0.99.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3