Assessment of the Advanced Very High-Resolution Radiometer (AVHRR) for Snowfall Retrieval in High Latitudes Using CloudSat and Machine Learning

Author:

Ehsani Mohammad Reza1,Behrangi Ali12,Adhikari Abishek1,Song Yang1,Huffman George J.3,Adler Robert F.4,Bolvin David T.35,Nelkin Eric J.35

Affiliation:

1. 1 University of Arizona, Department of Hydrology and Atmospheric Sciences

2. 2 University of Arizona, Department of Geosciences

3. 3 Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center

4. 4 ESSIC/CICS, University of Maryland

5. 5 Science Systems and Applications, Inc.

Abstract

AbstractPrecipitation retrieval is a challenging topic, especially in high latitudes (HL), and current precipitation products face ample challenges over these regions. This study investigates the potential of the Advanced Very High-Resolution Radiometer (AVHRR) for snowfall retrieval in HL using CloudSat radar information and machine learning (ML). With all the known limitations, AVHRR observations should be considered for HL snowfall retrieval because (1) AVHRR data have been continuously collected for about four decades on multiple platforms with global coverage, and similar observations will likely continue in the future; (2) current passive microwave satellite precipitation products have several issues over snow and ice surfaces; and (3) good coincident observations between AVHRR and CloudSat are available for training ML algorithms. Using ML, snowfall rate was retrieved from AVHRR’s brightness temperature and cloud probability, as well as auxiliary information provided by numerical reanalysis. The results indicate that the ML-based retrieval algorithm is capable of detection and estimation of snowfall with comparable or better statistical scores than those obtained from the Atmospheric Infrared Sounder (AIRS) and two passive microwave sensors contributing to the Global Precipitation Measurement (GPM) mission constellation. The outcomes also suggest that AVHRR-based snowfall retrievals are spatially and temporally reasonable and can be considered as a quantitatively useful input to the merged precipitation products that require frequent sampling or long-term records.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3