A Comprehensive Intermediate-Term Drought Evaluation System and Evaluation of Climate Data Products over the Conterminous United States

Author:

Xue Zeyu1,Ullrich Paul1

Affiliation:

1. Atmospheric Science Graduate Group, University of California Davis, Davis, CA

Abstract

AbstractClimate models are frequently-used tools for adaptation planning in light of future uncertainty. However, not all climate models are equally trustworthy, and so model biases must be assessed to select models suitable for producing credible projections. Drought is a well-known and high-impact form of extreme weather, and knowledge of its frequency, intensity, and duration key for regional water management plans. Droughts are also difficult to assess in climate datasets, due to the long duration per event, relative to the length of a typical simulation. Therefore, there is a growing need for a standardized suite of metrics addressing how well models capture this phenomenon. In this study, we present a widely applicable set of metrics for evaluating agreement between climate datasets and observations in the context of drought. Two notable advances are made in our evaluation system: First, statistical hypothesis testing is employed for normalization of individual scores against the threshold for statistical significance. And second, within each evaluation region and dataset, principal feature analysis is used to select the most descriptive metrics among 11 metrics that capture essential features of drought. Our metrics package is applied to three characteristically distinct regions in the conterminous US and across several commonly employed climate datasets (CMIP5/6, LOCA and CORDEX). As a result, insights emerge into the underlying drivers of model bias in global climate models, regional climate models, and statistically downscaled models.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3