A Statistical Method for Generating Temporally Downscaled Geochemical Tracers in Precipitation

Author:

Finkenbiner Catherine E.1,Good Stephen P.1,Allen Scott T.2,Fiorella Richard P.3,Bowen Gabriel J.3

Affiliation:

1. 1 Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR

2. 2 Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV

3. 3 Department of Geology and Geophysics, University of Utah, Salt Lake City, UT

Abstract

AbstractSampling intervals of precipitation geochemistry measurements are often coarser than those required by fine-scale hydrometeorological models. This study presents a statistical method to temporally downscale geochemical tracer signals in precipitation so that they can be used in high-resolution, tracer-enabled applications. In this method, we separated the deterministic component of the time series and the remaining daily stochastic component, which was approximated by a conditional multivariate Gaussian distribution. Specifically, statistics of the stochastic component could be explained from coarser data using a newly identified power-law decay function, which relates data aggregation intervals to changes in tracer concentration variance and correlations with precipitation amounts. These statistics were used within a copula framework to generate synthetic tracer values from the deterministic and stochastic time series components based on daily precipitation amounts. The method was evaluated at 27 sites located worldwide using daily precipitation isotope ratios, which were aggregated in time to provide low resolution testing datasets with known daily values. At each site, the downscaling method was applied on weekly, biweekly and monthly aggregated series to yield an ensemble of daily tracer realizations. Daily tracer concentrations downscaled from a biweekly series had average (+/- standard deviation) absolute errors of 1.69‰ (1.61‰) for δ2H and 0.23‰ (0.24‰) for δ18O relative to observations. The results suggest coarsely sampled precipitation tracers can be accurately downscaled to daily values. This method may be extended to other geochemical tracers in order to generate downscaled datasets needed to drive complex, fine-scale models of hydrometeorological processes.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3