Comparison of Microphysical Characteristics between the Southern Korean Peninsula and Oklahoma Using Two-Dimensional Video Disdrometer Data

Author:

Bang Wonbae1,Lee GyuWon1,Ryzhkov Alexander23,Schuur Terry23,Sunny Lim Kyo-Sun1

Affiliation:

1. a Center for Atmospheric Remote Sensing, Department of Astronomy and Atmospheric Sciences, Kyungpook National University, South Korea

2. b Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

3. c NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

AbstractDifferences in atmospheric environments can have a significant impact on microphysical processes of precipitation. Dominant warm (cold) rain processes in East Asia (southern Great Plains of the United States) are implied by a large (small or constant) gradient of reflectivity at low levels in vertical reflectivity profiles. Long-term ground observations using two-dimensional video disdrometers were conducted in the southern Korean Peninsula (KOR) and Norman, Oklahoma, United States (OKL). Raindrop size distributions (RSD) and their moments in the two regions were analyzed in the framework of scaling normalized RSDs. Results show that the concentrations of small (big) raindrops were higher (smaller) in KOR than in OKL. KOR RSDs were also found to be characterized by relatively high characteristic number concentrations and small characteristic diameters when compared to OKL RSDs. The increases with increasing in both KOR and OKL at lower Z with the opposite trend at higher Z. In addition, OKL RSDs with indicate the existence of an equilibrium between coalescence and breakup processes. Rainfall estimation relationships between the rain rate R and radar variables were retrieved from scattering simulations at S-, C-, and X-band wavelengths. KOR RSDs showed relatively small horizontal reflectivity and specific differential phase shift at the same R and same wavelength when compared to OKL RSDs. The regional dependency was significant due to the different microphysical process in KOR and OKL. The specific attenuation of KOR was, however, similar to that of OKL only at S band, indicating an advantage of using specific attenuation in S band in rainfall estimation.

Funder

Weather Radar Center, Korea Meteorological Administration

Korea Meteorological Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference67 articles.

1. Influence of disdrometer type on weather radar algorithms from measured DSD: Application to Italian climatology;Adirosi;Atmosphere,2018

2. Amemiya, Y. , 1997: Generalization of the TLS approach in the errors-in-variables problem. Recent Advances in Total Least Squares Techniques and Errors-in-Variables Modeling, S. Van Huffel, Ed., SIAM, 77–86, https://dl.acm.org/doi/abs/10.5555/267248.267258.

3. Doppler radar characteristics of precipitation at vertical incidence;Atlas;Rev. Geophys.,1973

4. Statistical tools for drop size distributions: Moments and generalized gamma;Auf der Maur;J. Atmos. Sci.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3