Measuring Changes in Snowpack SWE Continuously on a Landscape Scale Using Lake Water Pressure

Author:

Pritchard Hamish D.12,Farinotti Daniel23,Colwell Steven1

Affiliation:

1. a British Antarctic Survey, Cambridge, United Kingdom

2. b Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland

3. c Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland

Abstract

AbstractThe seasonal snowpack is a globally important water resource that is notoriously difficult to measure. Existing instruments make measurements of falling or accumulating snow water equivalent (SWE) that are susceptible to bias, and most represent only a point in the landscape. Furthermore, the global array of SWE sensors is too sparse and too poorly distributed adequately to constrain snow in weather and climate models. We present a new approach to monitoring snowpack SWE from time series of lake water pressure. We tested our method in the lowland Finnish Arctic and in an alpine valley and high-mountain cirque in Switzerland and found that we could measure changes in SWE and their uncertainty through snowfalls with little bias and with an uncertainty comparable to or better than that achievable by other instruments. More importantly, our method inherently senses change over the whole lake surface, an area in this study up to 10.95 km2, or 274 million times larger than the nearest pluviometer. This large scale makes our measurements directly comparable to the grid cells of weather and climate models. We find, for example, snowfall biases of up to 100% in operational forecast models AROME-Arctic and COSMO-1. Seasonally frozen lakes are widely distributed at high latitudes and are particularly common in mountain ranges, hence our new method is particularly well suited to the widespread, autonomous monitoring of snow-water resources in remote areas that are largely unmonitored today. This is potentially transformative in reducing uncertainty in regional precipitation and runoff in seasonally cold climates.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3