Interdecadal Changes in the Impact of the Philippine Sea Anticyclone on Boreal Winter Precipitation in Southwestern China

Author:

KE ZONGJIAN1,JIANG XINGWEN2,FENG JINMING3,WANG ZUNYA1

Affiliation:

1. 1 Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing, China

2. 2 Institute of Plateau Meteorology, China Meteorological Administration, Chengdu, Sichuan, China

3. 3 Key Lab of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Abstract

AbstractIn the last two decades, southwestern China (SWC) has experienced severe droughts, which are always accompanied by severe deficiencies in precipitation. In this study, we found that the interannual variability in boreal winter precipitation in SWC is modulated by the Philippine Sea anomalous anticyclone (PSAC). The interannual relationship between the PSAC and SWC precipitation experienced an interdecadal change around the early 1980s. The correlation between them was enhanced in the period from 1981 to 2001 (P2) compared to the period from 1961 to 1980 (P1). In P1, the moisture transported by the PSAC mainly affected eastern China, as the PSAC was located over the northern Philippine Sea, and the moisture budget of SWC was dominated by moisture transport at the western boundary. The PSAC, however, strengthened and shifted southwestward in P2, accompanied by a deepened India-Burma trough. As such, the PSAC transported moist air from the western North Pacific and the Indian Ocean into SWC through its southern boundary. Meanwhile, the stronger PSAC in P2 was accompanied by an upper-level convergence from the western North Pacific to the Bay of Bengal, which induced an upper-level divergence and ascending motion over SWC. Thus, the PSAC caused a significant increase in precipitation in P2. Stronger air-sea interactions in the western North Pacific induced by the El Niño–Southern Oscillation may be responsible for the enhancement and southwestward shift of the PSAC in P2 compared to that in P1.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3