Scale-Dependent Value of QPF for Real-Time Streamflow Forecasting

Author:

Ghimire Ganesh R.1,Krajewski Witold F.1,Quintero Felipe1

Affiliation:

1. Iowa Flood Center and IIHR-Hydroscience & Engineering, The University of Iowa, Iowa City, Iowa 52242, U.S.

Abstract

AbstractIncorporating rainfall forecasts into a real-time streamflow forecasting system extends the forecast lead time. Since quantitative precipitation forecasts (QPFs) are subject to substantial uncertainties, questions arise on the trade-off between the time horizon of the QPF and the accuracy of the streamflow forecasts. This study explores the problem systematically, exploring the uncertainties associated with QPFs and their hydrologic predictability. The focus is on scale dependence of the trade-off between the QPF time horizon, basin-scale, space-time scale of the QPF, and streamflow forecasting accuracy. To address this question, the study first performs a comprehensive independent evaluation of the QPFs at 140 U.S. Geological Survey (USGS) monitored basins with a wide range of spatial scales (~10 – 40,000 km2) over the state of Iowa in the Midwestern United States. The study uses High-Resolution Rapid Refresh (HRRR) and Global Forecasting System (GFS) QPFs for short and medium-range forecasts, respectively. Using Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimate (QPE) as a reference, the results show that the rainfall-to-rainfall QPF errors are scale-dependent. The results from the hydrologic forecasting experiment show that both QPFs illustrate clear value for real-time streamflow forecasting at longer lead times in the short- to medium-range relative to the no-rain streamflow forecast. The value of QPFs for streamflow forecasting is particularly apparent for basin sizes below 1,000 km2. The space-time scale, or reference time (tr) (ratio of forecast lead time to basin travel time) ~ 1 depicts the largest streamflow forecasting skill with a systematic decrease in forecasting accuracy for tr > 1.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3