Identifying Periods of Forecast Model Confidence for Improved Subseasonal Prediction of Precipitation

Author:

Richardson Doug1,Black Amanda S.1,Monselesan Didier P.1,Moore II Thomas S.1,Risbey James S.1,Schepen Andrew2,Squire Dougal T.1,Tozer Carly R.1

Affiliation:

1. a CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

2. b CSIRO Land and Water, Brisbane, Queensland, Australia

Abstract

AbstractSubseasonal forecast skill is not homogeneous in time, and prior assessment of the likely forecast skill would be valuable for end-users. We propose a method for identifying periods of high forecast confidence using atmospheric circulation patterns, with an application to southern Australia precipitation. In particular, we use archetypal analysis to derive six patterns, called archetypes, of daily 500-hPa geopotential height (Z500) fields over Australia. We assign Z500 reanalysis fields to the closest-matching archetype and subsequently link the archetypes to precipitation for three key regions in the Australian agriculture and energy sectors: the Murray Basin, southwest Western Australia, and western Tasmania. Using a 20-yr hindcast dataset from the European Centre for Medium-Range Weather Forecasts subseasonal-to-seasonal prediction system, we identify periods of high confidence as when hindcast Z500 fields closely match an archetype according to a distance criterion. We compare the precipitation hindcast accuracy during these confident periods compared to normal. Considering all archetypes, we show that there is greater skill during confident periods for lead times of less than 10 days in the Murray Basin and western Tasmania, and for greater than 6 days in southwest Western Australia, although these conclusions are subject to substantial uncertainty. By breaking down the skill results for each archetype individually, we highlight how skill tends to be greater than normal for those archetypes associated with drier-than-average conditions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3