Response of U.S. West Coast Mountain Snowpack to Local Sea Surface Temperature Perturbations: Insights from Numerical Modeling and Machine Learning

Author:

Chen Xiaodong1,Leung L. Ruby1,Gao Yang12,Liu Ying1

Affiliation:

1. a Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

2. b Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, China

Abstract

AbstractSea surface temperature (SST) significantly modulates the precipitation and temperature over land, with important consequences on land surface processes such as snowpack. Compared to the impact of remote SST, the effect of nearshore/local SST is less well understood. In this study, the impact of local SST on the mountain snowpack of the U.S. West Coast is investigated using two 6-km regional climate simulations driven by the same lateral boundary conditions but with time-varying versus time-invariant and warmer local SSTs during 2003–15. Results show that local SST warming leads to warmer winter with more precipitation over the mountains. Meanwhile, the removal of SST temporal variability results in reduced temperature variability but increased precipitation variability. As a result, winter snow accumulation decreases by ~200 mm per season in the Cascade Mountains in the north but increases by ~100 mm per season in the Sierra Nevada in the south. Such a dipole response results from the competing effects of precipitation and temperature change at different elevations and are amplified by the enhanced atmospheric river moisture transport. To further delineate the relative contributions of different meteorological factors to the snowpack response, two neural network models were developed to predict the snow behaviors at seasonal and monthly scales. These models reveal the dominant influence of the total amount and the average temperature of precipitation on the snowpack response. These findings highlight the sensitivity of mountain snowpack to local SST in the western United States and underscore the importance of local SST and atmospheric rives to accurate snowpack estimations for water management.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3